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Synopsis 

Within certain limitations, this work shows that the production of polymers with any pre- 
specified number average chain length and polydispersity is theoretically feasible when “liv- 
ing” anionic polymerizations are carried out in continuous stirred tank reactors (CSTRs) which 
are under optimal periodic forcing of the feed flows. The optimal periodic control problem 
was solved adopting a suboptimal objective function and a novel iterative numerical procedure. 
When the objective function is minimized in order to reduce the time average polydispersity, 
then the operation tends to become a sequential semibatch process. Conversely, if the objective 
is to maximize these variables, then the reagent concentrations inside the reactor tend to be 
180” out of phase. Different periods of oscillation must be selected depending on whether the 
required average polydispersities are above or below the steady state value of 2. The greatest 
flexibility in the MWD control is obtained with fast kinetics, and, in this case, average po- 
lydispersities between 1.06 and 9.2 may be required. 

INTRODUCTION 

Under ideal conditions, when a “nonterminated” anionic homopolymer- 
ization is carried out in a CSTR operated in the steady-state (SS), then the 
produced polymer exhibits a Schultz-Flory molecular weight distribution 
(MWD), with a fixed polydispersity D, (= pWlpn) of 2. The average chain 
lengths p, and pW may be altered, however, by adjusting the flow ratio 
between the monomer solution and the initiator solution. 

The periodic operation (PO) of continuous polymerization reactors has 
shown certain advantages with respect to the SS operation,’ and the par- 
ticular problem of the forced feed oscillations in CSTRs where “living” 
anionic polymerizations are carried out has been previously studied at sev- 
eral opportunities. The first work2 indicated that, with slow independent 
oscillations of the monomer and the initiator concentrations, the time av- 
erage polydispersity could be increased with respect to the SS value. Ban- 
dermann3 showed that, through sinusoidal oscillations of the “living” ends 
concentration inside the reactor, average polydispersities both above and 
below 2 could be produced, by simply altering the mean level of the oscil- 
lation. In a very recent publication: square oscillations of the reagent feeds 
180” out of phase and over a wide range of frequencies were considered. 
The average polydispersity could be varied between 1.75 at intermediate 
frequencies up to about 10 at the low frequency limit. Under certain con- 
ditions, the monomer conversion is always higher with PO than in the SS. 
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The optimal periodic control problem has been studied by several authors, 
both from a theoretica15-13 and from an  applied v i e ~ p o i n t . l ~ - ~ ~  In particular, 
the optimal periodic control of a continuous anionic polymerization was 
investigated by Langner and Bandermann.21 In that work, an  objective 
function was minimized with the aim of operating the reactor in an  inter- 
mediate fashion between a normal CSTR and a batch reactor, and in order 
to obtain polymers with polydispersities between 1.375 and 1.9. The control 
variables were the feed flows and the reactor outlet flow, and consequently 
the reactor volume oscillated cyclically. A suboptimal form of the theoretical 
solution was experimentally evaluated, and the polymer produced exhibited 
a polydispersity of 1.19. 

In the present work, the same chemical system as in the above-mentioned 
article by Langner and Banderman is theoretically investigated, but with 
the more general objective of producing polymers with predetermined av- 
erage values of both the polydispersity and the number average chain 
length, by forcing the feed flows only. Average polydispersities both below 
and above 2 can be prespecified. 

THE DYNAMIC MODEL 

Consider a nonterminated anionic solution homopolymerization carried 
out in an  isothermal and ideally-stirred CSTR. Assuming (a) a reaction 
mechanism consisting of simple initiation and propagation, (b) propagation 
constants independent of the polymer chain length, (c) a polymer density 
independent of chain length, (d) all kinetics are first order in each reagent, 
(el constant reaction volume, and (0 outlet reactor flow instantaneously 
equal to the sum of the feed flows; then the following mass balance may 
be written4: 

a11 1 
- 7 f I  [If]  - [I] - k ,  [I] [MI d t  V (la) 

f 1  -I- f M  [MI - k i  [I] [MI - k,[M]Ao (lb) d[MI 1 
- FfM [Mfl - ~ d t  V 

f I  + f M  A, 
V 

A, + k,[M]A, V 

A2 + k,[M] (2A1 + A,) 
V (le) 

where [I] and [MI are the concentrations of the initiator and the monomer 
solutions, respectively, (mol/dm3), A n = Z j J n  [Pj] (n = 0, 1, and 2) are the 
first three moments of the number chain length distribution Pi vs. j ,  where 
Pi is the “living” polymer of chain length j ,  V is the reaction volume (dm3), 
f I  and f,, are the feed flow rates of the initiator and the monomer solutions, 
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respectively (dm3/h), k and K, are the initiation and propagation constants, 
respectively, (dm3/g mol h), and the superscript f indicates feed stock con- 
ditions. From eqs. (11, the instantaneous number average chain length and 
polydispersity may be calculated as follows: 

The quality of a polymer obtained under PO is represented by the average 
properties under periodicity conditions of the accumulated effluent along 
an integer number of periods of oscillation T,  (h). We shall indicate these 
properties by the superscript *. For example, the average moments are ob- 
tained through 

and therefore 

Defining the simple time average of a variable r(t)  by 

note that x, # A,*; and, therefore, F n  # p,*; 0, # 0:. 
Other important properties are the average conversion of a reagent and 

the average polymer production per unit time z .  For example, the average 
monomer conversion is obtained through 
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while the average production @/h) may be calculated from 

where WM is the monomer molecular weight @/g mol). 

THE OPTIMAL PERIODIC CONTROL PROBLEM 

In this section, the optimization of a suboptimal functional is first con- 
sidered. Then, an iterative procedure which permits the production of poly- 
mers with any prespecified p: and 0: is proposed. 

The Objective Function 

Ideally, one would require minimization of an objective function consist- 
ing of the sum of three terms, corresponding to deviations from their desired 
values of pz, DE, and z .  However, optimal periodic control theory is as yet 
unable to deal with such complicated functionals, and even the simpler 
problem of extremizing 0: seems yet unsolvable. For this reason, Langner 
and Bandermann21 considered the minimization of the following cost func- 
tion: 

i.e., the simple time average of Dn(t)  along a period of oscillation. The 
selection was justified from the fact that, in all cases studied, when mini- 
mizing J ,  0,” always decreased. In the present work, the cost function of 
eq. (8) is also adopted, not only for obtaining polymers with average poli- 
dispersities below 2, but also for producing average polydispersities above 
that SS value. Denoting the SS condition with the superscript s, note that 
Js  = Ds, = 2. 

Extremization of the Suboptimal Functional 

Consider the problem of extremizing, 

1 T p  
J = -s m(x(t), f(t)) dt 

TP O 

with T, assumed fixed, and where in our case x(t) = 
Al(t), A 2 ( t ) ]  is the state vector, f(t) = [ fI(t), fM( t ) ]  T is 
and m = Ao(t)A,(t) /A: ( t ) .  The extremization of J is subject to the restrictions 
imposed by the state model represented by eqs. (l), which may be symbolized 
by 
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The Hamiltonian is defined by 

H = m + YT(t)a(x(t),f (t)) 

where Y(t) is the vector of costates, obtained from 

1023 

(11) 

In our case, eq. (12) yields 

d Y 5  A0 f I  + f M  

dt  A? v Y 5  
- - - +  (13e) 

The periodicity condition must be verified by both state and costate vec- 
tors; i.e., 

In order to find the controls f(t) that extremize J ,  the numerical method 
proposed by Horn and Lin5 with the modification suggested by Denn22 to 
normalize the iteration steps was utilized. In summary, the control vector 
in the kth iteration flk may be found from its value at iteration k-1 as 
follows: 

where 

+ 1 for maximizing J 
-1 for minimizing J I sg. = 
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E is the step length coefficient obtained through 
r 

with 

In eq. (15d), c i  is a n  adjustable step length coefficient weight of the appro- 
piate dimensions, and the denominator is included in order to normalize 
[aa/aflTy. The coefficients c 1  and c2 should be relatively low values, and 
may be readjusted between iterations. In our case, the correction Af yields: 

with 

In order to start the iterative procedure, a small periodic perturbation 
must be superimposed around an optimum SS value. In our particular 
problem, any arbitrary initial SS condition is adequate for the optimization, 
because Js is invariant for any given combination of the SS inputs. 

The Period of Oscillation and the Initial Perturbation 

For a given set of feed profiles, the period of oscillation has a great 
influence on p1.n* and D;, thus indicating the importance of adequately se- 
lecting this ~ a r a m e t e r . ~  In this work, the definition of T, and of the initial 
perturbation necessary to start the iterative procedure is based on a sen- 
sitivity analysis due to SinEik and Bailey.ls Assume that the initial control 
is obtained by imposing a small periodic perturbation 8f(t) about a certain 
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SS value fs: 

Then, to first approximation, the coyresponding change in the objective 
function J is proportional to its second variation, i.e., 

1 
2 

AJ -S2J (18) 

If the initial perturbations are assumed sinusoids with small amplitudes 
and a n  adjustable phase T ,  i.e., 

i3fI(t)= a I  sin o (t-T) 

S f M ( t ) =  aM sin o t 

then, it can be shown18 that 

where pik denotes a typical entry in the follwing (2 x 2) Hermitian 
7r-matrix: 

~ ( o )  = GT(-jo)PG(jo) + QTG(jo) + GT(-jo) Q + R (21a) 

with 

aa 
ax 

A =  - ( xS, fs) 

aa B = - (xs, f s )  
af 

a2H P= - (xs, f s ,  7 s )  
ax2 

a 2H 
af ax Q =  - (xS, fs, 7 ' )  

a2H 
af2 

R =  - (x', fs, 7 s )  

(21b) 

(21c) 

In our case, the sensitivity analysis is used as follows: (a) For different 
values of the phase shift, eq. (20) is solved over a wide frequency range; (b) 
the phase shift and the frequency providing the highest maximum in S2J 



1026 FRONTINI ET AL. 

are adopted for maximizing J; and (c) the phase shift and the frequency 
that produce the lowest minimum of 62J are adopted for minimizing J .  

The Algorithms for Obtaining Any Prespecified Polymer 

When maximizing J ,  it is expected that the final 0: will have increased 
with respect to its original value; and the opposite is expected when J is 
minimized. Thus, the extremizations of the cost function provide the upper 
and lower limits of 0: within which any intermediate value of this quantity 
could be, in principle, produced. Through an appropiate manipulation of 
the step coefficient weights along the optimization process, convergence to 
any intermediate value of J or 0: is possible; but the magnitude of the 
final p,* will have changed with respect to its original value, however. 
Indicating desired values with the superscript d ,  the problem therefore 
consists in simultaneously obtaining p,* = p: and 0: = 0:. In simpler sit- 
uations, this problem may be solved by the independent application of any 
of the algorithms that follow; but in more complex cases, both techniques 
may have to be sequentially utilized. 

Algorithm 1 

This numerical method is schematically illustrated by Figure 1. Basically, 
the desired goal is achieved through an iterative procedure which appro- 
piately readjusts the feed stock concentrations [ I f ]  and [ M f ]  after each 
optimization process, in order to produce the desired p:. 

Algorithm 2 

Figure 2 represents a flow sheet of t5is method. Here, the objective is 
met through an iterative optimization-rescaling procedure. The rescaling 
stage implies an appropiate readjustment of f J t )  and/or fM(t). 

A SIMULATED EXAMPLE 

Consider the polymerization of isoprene in n -heptane with n -butyllithium 
as initiator at 25°C. Under SS conditions, and utilizing the raw data of the 
first column of Table I, the dependent variables indicated in the remaining 
columns of that table may be calculated (0 represents the reactor mean 
residence time). The given SS is chosen as the basic starting condition for 
the different problems that are considered below. In all cases, the control 
variables were bounded as follows: f > 0. The computer programs were 
written in FORTRAN for a VAX 11/780. Due to the “stiffness” of the state 
equations under certain conditions, one of Gear’s integration routines was 
employed. 

Selection of Tp and of the Initial Perturbation 

Consider the perturbations about the SS represented by eqs. (191, with 
a ,  = aM = 0.01. Solving eqs. (21) for the given SS condition, and replacing 
the results in eq. (ZO), one may finally obtain an expression for 62J with 
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CHOOSE V ,  f s  , fi ANDTHE I N I T I A L  
CONCENTRATIONS [ I f ]  AND [ \ I f  1 

s d  
SUCH THAT LJ,, = L J n  AND y s  = 2d 

I F y  [ l f l  AND/OR [ > l f l  I N  

ORDER TO OBTAIN, IN THE S S ,  

PROCEED WITH THE THE NEW L ’ i  

EXTREMIZATION OF J 

UNTIL 
Di - DR 

t 
4 4 I Di I INCREASE LJ: DECREASE u: 

4 4 

A THE OPTIMUM I S  FOUND 
I I 

Fig. 1. Algorithm 1 for the obtention of (p:, 0:). 

the frequency o and the phase shift T as independent variables. Figure 
3(a) shows the graph of S2J vs. o for several values of T. From such curves, 
the set of values (T, = -Tp/2; Tp,m = 5.7 h) and T,, = - T p / 8 ;  T,,, = 
1.25 h) are respectively selected for maximizing and for minimizing J .  In 
order to verify the validity of the selected periods of oscillation, J was 
extremized at various frequencies around the corresponding stationary 
points of S2J. The results are shown in Figure 3(b) (the superscript + 
indicates optimal results). The stationary points of S2 J occur at the same 
frequencies as those of J + , thus validating the preselected periods. The 
resulting initial perturbations are illustrated in Figure 4. 

Consider the evolution of the objective function and of 0: along the 
optimization procedure when J is maximized [Fig. 5(a)] and when it is 
minimized [Fig. 5(b)]. It is observed that D*, generally increases (up to a 
final value of 6.40) in the first case, and that it decreases (down to 1.19) in 
the second. 

Maximization of J 

The first row of Table 11, together with the optimal profiles of Figure 6, 

a. k: has increased slightly with respect to the corresponding SS value. 
b. 0 has decreased with respect to as, but the production and the two 

conversions have all dropped with respect to the corresponding SS condi- 
tions. 

c. The optimal profiles are such that when [I(t)] is at its maximum, [M(t)] 

contain the results of the maximization of J .  Note the following: 
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I PROCEED WITH THE EXTREMIZATION~ 

CHOOSE: CHOOSE : 

3 2 1  a r l  

b s  1 b 2 1  

'I 
I L a r I 7 

RESCALE I 
f , [ t l  = a  f , ( t )  

f, ,(t) = b f h , ( t )  THE OPTIMUM IS FOUND 

UNTIL 

r!IN J UNTIL  

+ 

Fig. 2. Algorithm 2 for the obtention of (p$, 0:). 

is at its minimum, and vice versa. In this manner, a polymer with a very 
short average chain length is produced during appoximately half the period 
of oscillation, and a polymer with a relatively high average molecular 
weight during the remaining fraction. This result is reasonable from the 
point of view of maximizing D,*.23 

As o + 0, Figure 3(a) indicates that no increments in J with respect to 
the SS value are to be expected. This is not the case for D,*, however. As 
previously r e p ~ r t e d , ~  in fact the greatest increases in D,* are observed in 
the limit of very low frequencies, when square feed profiles 180" out of phase 
are employed. This may be easily interpreted as follows. Assume that the 
feed profiles of Figure 7(a) are applied around the previously mentioned SS 
condition, where the time is represented in units of T,. Figures 703) and 
7(c) illustrate the resulting p L , ( t )  and D,(t) profiles, when the period is 
increased from 5.7 (the value selected for the maximization of J> up to 200. 
In the limit of T, + 00,  J will tend to 2, whereas D,* will tend towards 
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h1, I I I I 

TD 8 5  3 2 1 075 

J' 
15 

10 

5 

0 
0 5 ' 0  w 

Fig. 3. Selectivity analysis for the selection of (Tmn; T,,,) and (T,; Trim): (a) S2J vs. o 
with T as parameter; (b) J +  vs. o with T = T,, and T = T,. 

some large finite number (in this case, 9.39). Furthermore, this last value 
could be still augmented by increasing the amplitude of the oscillations. 
Thus, the chosen suboptimal objective function J is unable to generate very 
large values of Ox, which could be better produced through increased pe- 
riods of oscillation. It is interesting to note, however, that when T, becomes 
very large with respect to 8, then the averaging tank required to mix the 
reactor effluent along a period of oscillation becomes intolerably large. For 

. 55  

.45 

Tp rnx Tpm" 

Fig. 4. Initial inputs adopted for: (a) maximizing J; (b) minimizing J .  
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1 20 

Iteration nr 

Fig. 5. Evolution of J and D f  along an optimization path when: (a) J is maximized and 
(b) J is minimized. 

example, in the table of Figure 7(c), the volume V eluted from the reactor 
along a complete period of oscillation, is indicated together with the re- 
sulting values of J and 0;. 

Minimization of J 

The second row of Table I1 and the profiles of Figure 8, contain the results 

a. p: has dropped considerably with respect to pi. 
b. The monomer conversion increases slightly with respect to the SS 

values, while the initiator conversion and the polymer production notably 
decrease. 

c. The optimal flow rates indicate that the process will tend towards a 
sequence of semibatch operations. In effect, the monomer is fed during a 
very short period of time at the point when the initiator concentration is 
at its maximum. Then, while the monomer is propagating, no regent is 
added. Only after the monomer concentation has dropped to zero, the ini- 
tiator is rapidly incorporated, and consequently [I(t)] quickly increases 
again up to its peak. This process is totally consistent with the fact that 
the narrowest distributed polymers are produced in semibatch reactors,24 
in a way which is equivalent to that described. Note that during most of 
the period, D,(t) is very near its lowest bound of 1. 

of the minimization of J .  Note the following: 

Production of Polymers with Predetermined Values of 1.1: and 0: . 

Suppose one is required to produce two different polymers whose speci- 
fications are given in Table 111. In both cases, p: coincides with the SS 
value from which the optimizations are commenced. 

From the extremization results, p: is more sensitive to minimizations of 
J than to maximizations of that functional. Thus, one could a priori expect 
less difficulties in solving polymer A than polymer B. This was confirmed 
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004 

100 

0 

30000 

pt,(t) L _ _  - _ _ _ _ - _ _ _ _ _ _ _  -______-. 

OO t 5  
Fig. 6. Maximization of J optimal periodic profiles. 

by the fact that solutions for polymer A were readily obtained by the in- 
dependent application of method 1 or of method 2 previously described, 
with relatively low computational effort. In contrast, in the case of polymer 
B, the two methods had to be sequentially combined, and a relatively large 
number of iterations were required. 

The results corresponding to polymer A with the independent application 
of each method are given in Table I1 and Figure 9, while those of polymer 
B are presented in the last row of Table I1 and in Figure 10. Note the 
following: 

a. When method 1 was utilized, only the initiator feed Concentration was 
adjusted in the case of polymer A, but the concentration of both reagents 
were modified for polymer B. 

b. When method 2 was utilized, only the initiator feed flow was rescaled. 
c. In all cases, p: and 0: were made to converge to values which are as 

close as required to p$ and 0:. 
d. In the case of polymer A, the values of J +  differ significantly according 

to whether method 1 or method 2 is employed. Also, and as a result of an 
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1 _ - _ _ _ _ _ - - -  I T  

0 . ' .  . . . . . . . . ' 
0 a) t/Tp 1 

" 
0 b) t/Tp 1 

Fig. 7. When square feed flows 180" out of phase of increasingly high peri 3s of oscillation 
are applied (a), it is easy to see that while J tends to 2 @), 0,' tends to a high finite value (c). 

increase in [ I f ]  through method 1, the corresponding f ? ( t  ) curve is per- 
manently below that of method 2. 

e. As expected, when 0: > 2, the optimal profiles are similar to those 
corresponding to max J .  Conversely, when 0: < 2, the shapes are similar 
to those corresponding to min J .  

Effects of Variations in ki and kp 
In order to test the proposed technique for different combinations of k i  

and k, while maintaining the other data unmodified, the cost function was 
extremized under the kinetics conditions indicated in Table IV. (The set of 
constants of kinetics 1 correspond to the previously considered simulations.) 
The SS results, together with the results of the extremizations of J for 
kinetics 2, 3 and 4, are summarized in Table V. Note the following: 

a. The values of T, obtained from the sensitivity analysis are all quite 
similar; the same is true for the phase T. 
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I t  
Fig. 8. Minimization of J optimal profiles. 

b. The values of p,* are of the same order as the corresponding pi's, except 
when minimizing J with high initiation constants (kinetics 2 and 4). 

c. The greatest flexibility in D ,* is obtained when both k and k, are very 
high. In this case, values of this parameter as low as 1.06 and as high as 
9.2 are observed. 

d. The greatest deviations between the numerical values of D,* and J +  
occur when J is maximized, because relatively high periods of oscillation 
are required. 

TABLE I11 
Characteristics of the Required Polymers 

Polymer A 1860 4 
Polymer B 1860 1.5 
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100 - 

L ___--. 
0 
0 t 5  0 t 5  

Fig. 9. 
method 2. 

Profiles for the obtention of polyjer A: (- - -1 results for method 1; (-1 results for 

e. In all cases considered, q; is lower than the corresponding qf, but the 

f. Even though not showned here, the shapes of the optimal profiles for 
same is not true with the monomer conversion. 

kinetics 2, 3, and 4 are similar to those of kinetics 3 .  

CONCLUSIOMS 

When a “living” anionic pojymerization is carried out in a CSTR, it is 
possible to set an optimal periodic control problem through which the poly- 
mer produced may exhibit average polydispersities D ,* both above and below 
the SS value of 2. For different data sets, the extremizations of the selected 
cost function provide the upper and lower limits of D,* within which any 
intermediate value of this property may be obtained. The problem of finding 
the flow profiles which allow the production of polymers with prespecified 
values of both 0: and p: may be solved through two novel iterative al- 
gorithms that involve readjustments of the feed stock concentations and 
rescalings of the feed flows. 

The preselection of the period of oscillction 9, and of the phase shift T 
for the initial perturbations, can be based on a sensitivity analysis due to 
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Fig. 10. Profiles for the obtention of polymer B. 

SinZi6 and Bailey.lB Extremizations of the cost function for values of T, in 
the neighborhood of those obtained through the said sensitivity analysis 
confirmed the validity of this approach. 

The numerical values attained by the adopted suboptimal objective func- 
tion (a, are in general of the same order as those of I),*, except when the 
period of oscillation is considerably larger than the time average mean 
residence time G. In this last case, it is preferable to select periods of 
oscillation lower than those determined by the sensitivity analysis. Higher 
frequencies of oscillation are also desirable from the point of view of re- 
ducing the volume of the averaging tank which is required to mix the reactor 
effluent. 

The results of the extremizations of J are also interesting from the point 

TABLE IV 
Set of Considered Kinetics 

k.k. 21.478 42,840 

4284 
42,840 

Kinetics 1 
Kinetics 3 

Kinetics 2 
Kinetics 4 
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of view of D ,*. When maximizing that cost function, the optimal feed profiles 
induce oscillations in the reagent concentrations inside the reactor which 
are approximately 180" out of phase. This has the effect of producing bas- 
ically a blend of two narrowdistributed polymer species: one of very low 
and another of very high molecular weight. When minimizing J ,  the con- 
tinuous periodic forcing resembles the sequential operation of a semibatch 
reactor, where a narrow polymer is obtained at the end of each cycle. The 
greatest variations in 0: are observed when the rates of initiation and of 
propagation are high. In this case, time average polydispersities between 
1.09 and 9.2 may be produced. 

In summary, the proposed approach provides an increased flexibility for 
the MWD control, when anionic polymerizations are performed in CSTRs. 
At present, the experimental validation of the technique is being investi- 
gated, and this will be the subject of a future communication. 
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